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Abstract—General connections are established between the mechanical and thermal responses of
composite materials with debonded or imperfectly bonded interfaces. and with internal cracks or
cavities. In particular, such results are found for multiphase composites or polycrystals in which
normal and, or shear displacement jumps may exist at interfuces or cracks, consistent with complete
debonding or with the presence of a nonlinearly elastic interphase layer. [n two-phase systems with
isotropic phases and sliding interfaces. we also recover exact connections between the mechanical
and thermal stress or striin fields in the phases.

1. INTRODUCTION

Evaluation of thermoclastic propertics of composite materials is of considerable interest,
particularly in high-temperature ceramic systems. Although pertect bonding between the
phases may be desirable, vitrious types of imperfect bonding at interfaces, as well as internal
cracking may exist in actual systems. Any such damage mode will cause a change in overall
stiffness, in local mechanical fields, and also in the overall thermal expansion cocflicients
and in the thermal stress and strain fields. 1tis well known that in perfectly bonded systems,
the overall thermal properties can be evaluated in terms of phase properties and mechanical
concentration fuctors (Levin, 1967). More general relations involving local fields also exist
for certain perfectly bonded two-phase systems (Dvorak, 1983, 1986, 1990 ; Dvorak and
Chen, 1989 Benveniste and Dvorak, 1990a), and also for two-phase composites with
isotropic constituents and slipping interfaces (Benveniste and Dvorak, 1990b).

The present paper extends this line of inquiry, and establishes such connections for
many other damaged composite materials. In particular, we show in the first part of the
paper that the Levin-type connections are recovered in multiphase composite systemns of
arbitrary phase geometry and muaterial symmetry, even if the interfaces, or their parts,
undergo debonding which is cither complete, or consistent with the presence of a very thin
nonlincarly elastic interphase layer which permits both normal and shear displacement
jumps at interfaces. In the second part, special forms of these results are found for two-
phase composites. Morcover, in two-phase systems with isotropic constituents and slipping
interfaces, exact relationships are found between mechanical and thermal stress or strain
fields in the phases. This is accomplished with the help of uniform strain and stress ficlds
in heterogencous media (Dvorak, 1990 ; Benveniste and Dvorak, 1990a).

The emphasis is on evaluation of general thermomechanical connections rather than
the formulation of micromechanical models. Examples of the latter may be found in other
recent references, ¢.g. Chen and Argon (1979a.b) : Lené and Leguillon (1982) ; Benveniste
and Aboudi (1984); Mura ¢f al. (1985): Benveniste and Miloh (1986); Tsuchida er al.
(1986) ; Jasiuk et al. (1988): Achenbach and Zhu (1989): Jasiuk and Tong (1989):
Hashin (1990). Thercfore. throughout the paper we assume that the local fields caused by
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2908 G. J. DVORAK and Y. BENVENISTE

mechanical loads can be evaluated by an independent analysis. Qur purpose is to provide
a general methodology for evaluation of the thermal response of damaged composites from
the various solutions of mechanical loading problems.

2. MULTIPHASE COMPOSITES

2.1. Phuse and interfuce properties

We first consider multiphase media with ¥ constituent phases. which may represent
such actual systems as matrix-based composites or polycrystals. and focus our attention at
a sufficiently large representative volume which has the same effective properties as any
other volume of such or larger size. If a matrix is present. then it will be denoted by r = 1,
and r = 2.3..... N will represent the reinforcing phases. All phases are linear thermoelastic
solids. their constitutive relations are

o, =L +10,, ¢, =Moo, +mb,, r=12...... V. (1)

where a,. ¢,. L.. 1., 8, denote, respectively. the stress, strain, stiffness, thermal stress tensors
and a uniform temperature change. M, = L, ' and m, = —M,1, are the compliance and
thermal strain tensors.

Damage in composites may be due to internal cavities or cracks, and imperfect bonding
between the phases. Imperfect bonding may be regarded in terms of a thin interphase region
of certain stiffness, or as interface cracks and cavitics. The interface between phases r and
s will be represented in this paper by an idealized geometrical surface of zero thickness.
Nevertheless, it will be convenient to think of these interfaces as two-sided surfaces S,. and
S.. adjacent to phases rand s respectively ; such a notation wall also help symmetrize many
expressions in the paper. The displacement ficld may or may not be discontinuous across
such interfaces. Should a cavity or a crack develop between the phases r and s, the surface
of that vacuous zone will be denoted by S, and S.,. The surface S, will be that in contact
with phase r, and 8, that in contact with phasc s, (sce Fig. 1a). The phases may also contain
internal cracks or cavitics. The surface of such a defect which is internal to phase r will be

@)

(b)

Fig. 1. (a) Interface between two phases rand s, (b) Possible choice of coordinate systems at
interfaces.,
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denoted by S,,.. In the case of a thin crack in phase r, it may be convenient. though not
necessary. to consider the decomposition S,, = §;; v S,; where §;7 and S;; denote the upper
and lower surfaces of the crack.

Atany point on the interfacial surface between phase r and phase s. it will be convenient
to define the unit normals '™ = —n"" from phase » to phase r. At the surfuce of a cavity
or crack which is in contact with phase r we will define the normal n'” from phase r into
the vacuous zone.

The displacements and tractions. together with the unit normals described above at
any point x of the interfacial surface, will be described in a single Cartesian coordinate
system. This Cartesian system can in principle be fixed in spuce, but can also be conveniently
chosen at the generic point X on the interface. In the latter alternative, we may choose either
(n"". p. q) or (n"", p. q) where p and q describe the tangential unit vectors at the interface
(see Fig. 1b). For a cavity or a crack, we will choose (n"”, p. q). With no loss of generality,
we thus adopt the coordinate system (n', p. q). where in the case of a pore or a crack there
isr=s.

At any generic point x of the interfuce. let us define the traction vector exerted from
phase r to phase s as t, and from s to ras t:

tord

tlr\) - (,5'?‘)‘ ‘f’:‘r}~ ’f’nl)f‘ t - (t,('\r)‘ ’:’tri‘ ,L\'r))T. (2)

tre}

We note that both are expressed in the coordinate system (n'™, p, q). Regardliess of the

nature of the bond. i must be in cquilibrium with t"m. thus
juilib
0+t = 0. (3)

For a generie point X, at a surface S, of a cavity or crack adjacent to phase r, it follows
that

7 = (et =0, 4)

where the quantities are described in the coordinate system (a', p, q) defined above.
Displacement vectors at any point x of the interfuce are defined at cach side and
expressed in the coordinate system (o, p. q) as:

try , (n) ()

u? = (0 u = W el (5)
the difference or jump in those displacements across the interfuce will be denoted by
[u] = u" —u', (6)
These conventions permit us to define the following types of interface bonding that
will be of interest in the sequel. A perfectly bonded interface which does not contain any
interphase layer is characterized by the relations
t(rn = _t(\rl # 0. [“] =10. (7)
At a debonded interfuce which is actually considered a cavity or a crack,

t = 0. 3

Our interest will frequently focus on imperfectly bonded interfuces, which allow non-
vanishing relative displacements to exist together with nonzero tractions. The implication
is that the displacements and tractions are related in a certain way at each instant of loading.
as if the interfaces were connected by a very thin layer of interphase material. We limit our

SAS 29:23-6
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attention to systerns where such relationships, or the properties of the interphase, are
described by the incremental form

dlu,] = M,,(t°)de,.
d[u,] = M,,(t°)d1,+ M, (t%)dt,,
dlu,] = M, (t)de, + M, (t°)de,. 9)

at each current magnitude t"” = —t" = t° of the interface traction; for simplicity we have
denoted (d¢,, dr,, dt,) = (det”.de5", del" ). The M4 with 2, f = n, p, q, are the instan-
taneous “‘compliances™ of the interface, or interphase layer, and are assumed to be rep-
resented by smooth, continuous functions, that satisfy the symmetry condition M,; = My,
Since the interphase is assumed to be very thin, the contributions of the terms M,,d¢,,
M, dt,. etc., to d[u] are considered to be insignificant and are neglected.

The imperfectly bonded interface that can be represented by (9) includes nonlinearly
elastic coatings, and also interfaces which are weak in shear but perfectly bonded in the
normal direction, in which case M, (t°) = 0. and [u,] = 0. The representation (9) may imply
an interpenetration in the normal displacement components u, across the idealized interface
in the case of a normal compressive traction. However, since we limit ourselves to small
strains, and since these interfaces do in fact represent interphase regions with a certain
thickness, such interpenetration can be accommodated by compression of the interphase.
Interfaces that exhibit frictional contact, perfect bonding, or complete debonding are not
represented by (9). Indeed. interlace friction would relate the tangential components of the
traction to the compressive normal component when [u,] = 0, but without reference to the
magnitude of [u], although the ratio of ¢ to ¢ may determine the direction of [u].

2.2, Local fickds

Leta representative volume of i composite material be subjected to an overall uniform
stress @, or strain &, and to a uniform temperature change @, In particular, we select the
overall thermomechanical loading on external surface S as

u(S) = eg,x, 0(S) =10, (10)
so that & = &,. and examine its effect on local strain and displacement fields in the phase.
We assume that the local ficlds can be evaluated by an independent analysis of each
specitic system. Examples can be found in the references listed in the Introduction. In
systems which undergo progressive debonding, i.c. involving changes in the size or location
of the interfuaces (8). und progressive deformation induced at the imperfectly bonded
interfaces (9), such analysis may need to be performed at many different points of the
prescribed loading path leading to the current state (10). In any event, the current local
strain and displacement ficlds can be denoted by

g (x) =¢g'(x:20.00). u(x) =ul(x:80.04), 0(x) =0, (rn

The displacement and temperature increments on the outer surface S of the representative
volume arc incrementally specified for a chunge in the temperature or strain, as

w(S) =z,x. 0(S) = 0,+d0, (12)
or
u(S) = (go+dey)x, 0(S) = 8,. (13)

The resulting incremental strain and displacement fields to be superimposed on (11) are:
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de,(x) = a,(x ;25 0,)db,, du, =d.(x;89,8,)db, (14)
or
de,(x) = A.(x;&g,0)de,, du, = D,(x;e,0,)de. (15)

where a,(x; &,. 0,), d,(X; &. 8,) are certain thermal influence functions, and A,(x: &, ;).
D,(x: &, ;) are the mechanical influence functions. Their dependence on g, and 0, is the
consequence of possible progressive debonding and/or nonlinear behavior of the interfaces.

2.3. Overall properties

The overall average strain in the presence of imperfect bonding is the sum of average
phase strains, and strains that may be contributed by the relative displacement at the
interfaces as well as by the presence of cavities and cracks. A derivation for two-phase,
matrix-based composites has been given by Benveniste (1985). Here we present a more
general result that applies to multiphase composites, not necessarily matrix-based, which
mav contain cracks and cavities.

Using the notation introduced in Section 2.1, we show in Appendix A that the average
strain in such a composite is given by

hi

E= Y - S Y. (16)

r= r=1 s=|

where ¢, denotes the volume fraction of phase r. ¥ is the number of phascs, €7 is the
average strain within that phase, and the second order tensors J,, are given by :

! |
S = 5y @ a0y ds,,, I = s (e n$" +ul"nlNdS,. (17)
p4 N, < Se

It is noted here that thinking of the interface surface between the phases r and s as two-
sided surfaces S,, and S,, allows a symmetrical representation of eqns (17), and (17),.

It is often convenient to introduce concentration factors that reflect the presence of
damage. In particular, under the load increments prescribed in (12) and (13), one finds
from (14), (15) and (17):

dJn = Frr(zlho(l)dz(l+rn(8()' 0()) doov I',S = l'zv'--st (l8)

where the concentration factor tensors F,, and f,, are related to the D, and d, influence
functions in (14), and (15), as:

ors
rukl

—) J (D:k/(x)n;") +D;I’t)l(x)n("))dsrn

|
/o= .,'-l;‘[ @7 ()N +d (x)n™) dS,.. (19)
= S,

The concentration factors F,, and f, related to dJ,, are described simply by inter-
changing r and s in (18) and (19). Together with the related factors defined in (14) and
(15). they facilitate the description of overall properties of the damaged composite materials.
We refer again to the representative volume of a composite material which is subjected to
overall uniform stress 4, or strain &€ and to a uniform temperature change €,. Since the
overall response is not necessarily linear, it is sought in the incremental form
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d& = L(E. ()n)dé"l’l(é. 0()) d0(|-
de = M(E. 0,)de +m(z. 0,) d0,,. (20)

where L(g. #,) and [ (&. 6,) are the instantancous stiffness and thermal stress tensors which
depend on the current overall strain and temperature. The M(Z, 8,) and m(z. ¢,) are the
corresponding compliance and thermal strain tensors.

These effective properties can be determined once the concentration factors a,. A,. the
volume averages of the influence functions a,(x: €,. t,). A(X: gy. 8,) introduced in (14)
and (15). and the tensors F,, [, defined in (19) are known. Equations (14),, (15),. (16).
(18) and (20), readily provide the following expressions for L and I :

¥ NN
L(g).00y) = L, + Z AL, —L)A(g,.0) + L, Z Z F,.(¢).0,)
r=2 r=1 =1
v v v
1(e).0,) = Z ol + Z (L, —La(es. 00)+ L, Z Z f..(g4.0,). 2n
r=| r=2 r=1 s=1

Similar equations can be obtained for M and m.

2.4, Evaluation of Vand m

In his (1967) paper, Levin found an expression which relates the thermal stress tensor
I to the mechanical concentration factors A, of the phases and to phase thermal vectors |,
in an undamaged composite with perfectly bonded interfuces. An analogous relation exists
between the overalt thermal strain tensor m and the stress concentration factor B, and phase
thermal strain tensors m,. Under certain conditions, a similar formula can be derived for
composiles with imperfectly bonded or partially debonded interfaces defined in (7) (9).
The derivation presented here will use the reciprocal theorem, although a similar result
follows from a modificd principle of virtual work for composites of this type (Benveniste,
1985). For completeness, we present in Appendix B a derivation of the reciprocal theorem
which accounts for the effect of applied cigenstrain fields and imperfeet interfaces.

Suppose that the composite has been loaded o some current known state (g, a4, 0),
where the extent of partial and/or complete intertface debonding has been evaluated such
that all coetlicients in (9) and the mechanical influence functions A, (x; g4, ), B,(X; g,.
01 and D,(x: &y, 0,) in (15) arc known together with the instantaneous overall stiffness
L. and compliance M = L ', In this current state, we apply two separate load increments
(") and (") such that there is no change in the type of intertuce bonding (7)-(9) on S,,. First,
an overall uniform stress increment dey, is applied at the current temperature 8(S) = 0,,.
According to (15). this will cause the strain and displacement fields in the phases

dei(x) = M,B.(x;e,.04) do, = A, (x:8,0,)Mday, (22)
duy(x) = D,(x;¢&,.0,)M day,. (23)

Next, the overall temperature is changed from 0, to 03 at fixed overall stress 6. This
will cause the local thermal strains m, d0” which can be expressed as

di) = —L.m d0g =1, d07, (24)

as well as the displacement fields denoted by

 The influence function B,(x: &, 0,) relates the stress increment da, to the local ficld da,. in the sume way
as the function A, relates the strains in (15).
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du’ = d.(x:g,.0,) dO;. (25)

Let us now use the reciprocal theorem given in (B8) in its incremental form. Note that
dF;=dF!=d+,; =dt’= 0, and write

Al
Jda;,n-du”dS%»j- dt;, « [du"}dS,. = Z J‘ —d/‘.',’ds:dl'%-J~ dt;, - [du'}dS... (26)
by S L Jt, Sim

r=

where we have used the notation S, to denote a/f interfaces between the phases rin volumes
V.. Of course, at surfaces in contact with vacuous zones. the tractions and thus these
integrals vanish.

The first integral on the left-hand side is, by definition, the scalar product of the overall
stress increment with the strain increment da® di&7. A substitution from (9) reveals that the
two integrals over S, contain terms dt’ M, dt” and dt” M, dt' = dt” M}, dt”, respectively.
Since (9) was assumed to admit only interfaces where M, = M. those integrals are equal
and cancel each other. At locations where the interface is perfectly bonded ([du] = 0). or
completely debonded (dt = 0). both integrals vanish.

The remaining two integrals over Fare rewritten with the help of (22)-(24). One torm
15

AY
J doymd0idy = % {J L M B, (x:a,.0,)da, d0;d l} (27)
' v,

r=1

Since M, = M =L, ', the right-hand side integrand can be shown to be rewritten as
da),B 'm, d¢/;. Thus (27) can be solved for the overall theema! strain tensor m as

N
m(e,.0,) = Z {J B!'(x:6,.0,)m,d P} (28)
l’

r-1

An analogous analysis yields the expression for the overall thermal stress vector

e, 0,) = Z {J "\rr(x:gu‘()n)lrdV}- (29)

r=1

Taking the phase volume averages of the influence functions over 1, gives

N

Y
m(a,.f,) = Z B (e, 0)m,. 1a,.0,) = Z ¢, Al gy 0L, (30)

rel r=

This result is formally identical to that found by Levin (1967), however, the mechanical
concentration factors entering here are those of the damaged composite, and as such
they depend on the current geometry of the imperfectly bonded or debonded interfaces.
Therefore, (28)-(30) should be utilized in conjunction with an incremental solution of a
thermomechanical loading problem for the damaged composite material. Of course, such
a solution may provide the overall strains, and (30) can then identify the purcly thermal
contribution. However, if the gecometry changes cease at a certain load level, ¢.g. because
the imperfectly bonded interfaces have separated, then the mechanical concentration factors
remain independent of further load or temperature changes. Once these become known
from the solution of a mechanical loading problem for the damaged composite. the above
relations can be used to find the overall thermal properties.
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3. TWO-PHASE COMPOSITES

3.1. Overall properties

First, consider some specific forms of the above results which apply to two-phase
composite systems. Suppose that r = | denotes the matrix and r = 2 a reinforcing phase.
Then the general expressions (21) for the overall stiffness L can be rearranged as:

L(e%0y) = L, +c:(L; =L )A:(g0.05) + L A(ey. 0)).
1e°.8y) = ¢\l +caly +c2(Ly—Ly)az(es. 0) + Lya(eo. 6,), (31)
where the A and a tensors reflect the effect of damage, and the A, a, are the mechanical

concentration factor tensors of the damaged composite. The overall average strain (16)
now becomes

§=C|§|+C:€2—J. (32)

where , are the average strains in the constituents. and J is given by the double sum in (16)
taken over r. s = 1, 2. From the above representation, it is seen that

dJ = A(g,.0,) de, +ale,. 8,) dU,. (33)

For two-phase composites, an alternative expression for the He,. 0,) in (31), can be
obtained as follows. First write (32) in incremental form, and recall that under (12) and
(13) d& = de”. Next, make use of (14),, (15), and (33) to obtain

QA (B O0p) + A (g, 00) = Aley. 0y) = 1, cyay(8g, U0y) + itz (8. 0g) —a(e,. 8y) = 0,
(34)

where 1is the fourth order unit tensor. Finally, write (30), for two-phase media as
ey, 0y) = ¢, Af(ﬂ(h Uty + ":f\g(all- O, (35)

One can now solve for Al (e, 0y) and Al (e,, 0y) from (31), and (34),. and substitute them
into (35) to find

ey, 0,) = {L(Bm()o)"LI}(L:‘_Ll) ’ I(lz—ll)
+||+AT(BU-UU){|I—LI(LZ—Lt)'I(|2“’||)}~ (36)

The diagonal symmetry of the L tensor has been invoked in the above derivation.

3.2. Isotropic constituents with slipping interfuces

We now consider a two-phase system which admits connections between mechanically
and thermally induced pointwise fields that are not available in multiphase composites. The
constituents arc both isotropic, and the displacements of the interfaces are limited to
nonlincar slip, i.e. M,, =0 in (9). Furthermore, the individual phases are assumed to
contain no cracks or pores. In this particular system, the influence functions a,(x; &y, 0p)
and d,(x; &,, 0,) are uniquely determined by their mechanical counterparts A, (x; &g, 04)
and D,(x; gy, 0,), respectively. Also, the general formula (36) can be reduced to a particularly
convenient form, The specific results are:

a,(x;89,8,) = {I_Ar(X;sﬂ\HO)}(LI "Lz)_l(lz—lu)v
d(x;8y,6p) = {x—Dr(x;80~90)}(Ll —Lz)—l(lz“lx)y
a=—A(L, -Ly) '"(-1), I=L+L~-L)L,—L,)""'1-1). 37
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The validity of these relations will now be proved using the concept of incremental
uniform fields in heterogeneous media introduced by Dvorak (1986). The composite is
subjected to the boundary conditions (10), has the local fields (11), and the goal is to
evaluate its response under a temperature increment dff, from the current state, as in (14).

Superimpose on (10) the incremental loads dé and dd,,:

u(S) = gox+déx, 6(S) = 0,+d0,. (38)

The d6, is given but dé is not known ; it is to be determined such that together with dd, it
creates a strain field dé, and a stress field dé which are both uniform in the entire rep-
resentative volume. The desired magnitudes of dé and dé can be readily determined from
(1). Write the local incremental fields in both phases. make them equal, and evaluate the
desired strain

dé = (L,—-L,)""(,-1,)dd,. (39

An analogous derivation (Dvorak, 1990) for a composite under overall uniform stress
shows that a uniform stress ficld dé can coexist with a temperature change dd, if

de = (M| —Niz)ml ("‘.’“‘"‘l)doo'

In the present system with isotropic constituents, both dé and dé are hydrostatic.
thercfore, in the absence of normal interface displacements, the above increments cause
only normal and continuous tractions at all interfaces. Of course, this also prevents interfuce
slip, and the composite responds to the incremental loading (38) as if the interfaces were
perfectly bonded.

To restore the original boundary conditions (12), the auxiliary strain d&2 must be
removed. This is accomplished by changing (38) to

u(S) = e"x+diex —déx, 0S) = 0,+d0,. (40)
The incremental fields produced by the loading/unloading sequence (38) and (40) are
de,(x) = de—A,(x;2, 0,)d2, du,(x) =déx—D,(x;e,.0,)dz, 41

where dé is to be substituted from (39). Note that (40) and (12) are identical, hence a,(x;
gy, 0y) und d,(x; g, 0,) can be extracted by comparing (14) with (41). This leads to the
expressions (37), and (37),. :

To recover (37) 5, recall that in the present derivation we rule out vacuous zones, hence

A=F,+F,, a=f,+1,, (42)

with F,, and f, being given in (19). A substitution from (37), to (19),, together with (19),
and (42), readily provides (37) ;.
Finally, a substitution of (37), with r = 2, and of (37), into (31), gives

1€, 0,) = e\l +cl,+e(L—L)(I=A)(L, —Ly) '(I,=1,))=LA(L, =Ly " (1,-1)).
43)

Solving for A, in (31), and substituting into (42) then provides (37),.

Recall that the thermal stress tensor | for two-phase composites with anisotropic
constituents is given by (31), or (36), and for systems with isotropic phases and slipping
interfaces by (37),. These relations were arrived at by two entirely different approaches,
hence it remains to be shown that they are equivalent under similar circumstances.
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For isotropic constituents there is:

(), = 23,

(L I )(;r\ = /f(i”(s” + ./'((j:rdr\ + (5,\(5/, - i()-:/’jr\ )-
( L i L { )hniu = :(i,\(i,,m + ;(‘jm:(i\n + drn‘j\m - ,—:()-m(jmn )~
(/: - ll )nm = Ad!mv‘ (44)

where x. . 9. &. {. 4 are constants. Writing A" in indicial notation and carrying out the
summation in (36) according to (44) shows that the tensor A" enters only as (A"),,.
Moreover, the continuity of normal displacements at S.,. which was assumed in the above
derivation of (37),. implies that according to the definition of the A tensor, in (31)-(33),
A= 0. orin fact (A7), = 0. This leads to the conclusion that (36) indeed reduces to the
form (37), when the phases are isotropic and the interfuces may experience only shear
displacements.
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APPENDIX A

Equation (16) will be derived in this appendix. The considered multiphase composite may contain pores and
cracks at arbitrary locations, but need not be matrix based. see Fig. Al for a typical volume of such a composilte.
To derive egqn (16) it is sufficient to consider a three-phase composite as in Fig. A2, Note that phase s” is in
contact both with phases ™ and “p”. u situation which would occur in non-matrix based composites. The
notation in this figure is that described in Seetion 2.1, The derived average strain for the configuration of Fig. A2
can be readily generalized to multiphase composites of the type described in Fig. Al
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PHASE

PHASE “s”

Fig. Al. A multiphase nonmatrix-based composite with defects.

We start by writing the average overall strain for the composite (Benveniste, 1985)

&, =

J‘ (e, +u,n) dS. (AD)
N

19

%

where § denotes the outside surface and n the outward normal to S. The average strain in phase 7 can be written
as

I 7NN 1
JEN i ] . ir) (4] N
F = —e o = WV, = o ) ()" a7 ) dS
2V, Jn 4y, ox, Tl

1 |
+, " W n” +u"n"ds,, + p (" ™ 410l Ty dS,,
- S, =¥ s,

’

-V

|
+ oy J W' nf" +u”n™MdS,,. (A2)
N

e

where CGiauss's divergence theorem has been used.
Similarly, we can write the average strain in phases s and poas follows

i
'::I\l - j (“‘(')":-n +"l(v)"'un) dS', + ;i; (u:-)":-p) +“f""f"")d5.,n
v JS ~7 v JY,
. .

[=)

| i
= g | P ey dS, 4 | e e dS,, (A3)
PV =T N,

Fig. A2. A three-phase composite used in the derivation of the average strain.
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where ', and ¥/, denote the volumes of phases s and p. respectively. The total voiume ¥ = 1, + 1", + I, Multiplying

eqn (A2) by ¢, = V.V, und equation (A3), and (A3); by ¢, =¥, }V and ¢, = V7, }", respectively, and adding.
results in

£= L‘,E-"' +C(im +“’6-'pl _ gt g gee _Jl;"y_J”m_J'pn__J("l‘ (Ad)
where we used the definitions in (17). A generalization of (A4) to multiphase composites provides eqn (16).
Equation (A4) or (16) reduces correctly to eqn (3) in Benveniste (1985) and (29) in Benveniste and Dvorak
(1990b) which were wnitten for two-phase matrix-based compositest. To draw a parallel with eqn (3) in Benveniste
(1985). we simply note that a in that equation is given in the present notation by

n=n""= —n'?, (AS)

where 1" denotes the matrix and 2" the inclusion and [u,} was defined as

[t]s,, =w?=u'" at§,.. (A6)
so that
1
TR J‘\‘._- ([, + {1, )n)dS 2 = U, + 0, (A7)
Recalling that no vacuous zones were present in the phases in these previous works, J,, = J,; = 0. and it is seen

that eqn (3) in Benveniste (1985), and (29} in Benveniste and Dvorak (1990) are stmply special cases of (A4).

APPENDIX B

An extension of the elastic reciprocal theorem to the situations in which the lincarly clastic body contains
interfaces of the type described in Section 2.1 can be written as

J‘ I",'u,"dl'+J‘ l,'u;'d.\'+'[ 1w ds,, +J‘ et ds,
' N S, s,

:J I"j':l,’dV+J 1:’u[d.¥+J 07 uln ds,, +J (T dS, (B
[ N 5, N,

AY

where ) are the displacements caused by the system ¢, F7, and w0 are the displucements caused by the system /),
F.

When distributions of cigenstresses 4; = [0 and A = [, 0" are respectively applied to the two systems, the
local stress licld is given by

a(x) =d,(X)+ 4. (B2)
where
G(x) = L) (x). (B3)
The ficld (B2) satisties

&, 4 F+i,, =0 inV
g, +in =1 onS,

G ™A™ =1 ons,,

PN T BT LA T B I o :
gn" +in =" onS,. (B4)

A similar representation holds for the double-primed system.
Detine new body forees ind surface tractions

Fad - - bl .
Fo=F+i,, to= -0y,
07 = (=i n'™, 0 = 1 —dn (B5)

and rewrite (B1) with £/, F7 replaced by £, £, ¢, £/ by ', I, etc.
Consider first the right-hand side of (Bl) rewritten as described above and substitute from (B4) to find

t Note that there is a misprint in the definition of J in eqn (30) in Benveniste and Dvorak (1990). The term V'
should be replaced by ¥, in that equation, as well as in eqns (36) and (47) of that work. Therefore, as we show
in (A7), the correspondence between the J term in Benveniste and Dvorak (1990), and the J ., J;, terms in the
present paperis: ¢ J = (J,+J,,).
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s,

R A

J Ffu[dl"of }.,",_,u,'dl'#hj. (= son)u dS - ' (" —an ! ds,, + [ (™ = A" " dS,,. (B6)
] + A S
Manipulating the second term in (B6) through the divergence theorem. one finds

v

J i u'dl':J i, dS+‘ }.:juj"n;"'dS,,+J A n',"'dS\,—J‘ iu db, (B7)
1 A \'" +

Moreover. u,, = ¢, + . and since 2, = A7, &), = —,,. it follows that when (B7) ts substituted into (B6). some
of the integrals on S and S, cancel out.
A similar procedure applied to the left-hand side of (B1) yields the form of the reciprocal theorem which is

valid under internal defects at S, and in the presence of eigenstrains 4, = /0

J F:u:'dl'-&—j ru'dS - /’.,’,t:j’,dl'ﬁ—J‘ AT dS,,+—J e u dS.,
1 N \" \'v’

-

=j F:'u,'dl'-{»-J‘ lj'u,'dS—J ),,",f:,',dl'-&-j AT dS,d—J 1yt dS,.  (B8)
: ¥ i S, S

It is interesting to note that although the linearity of the constitutive law in the phases has been assumed in (Bl)
and (BS), the constitutive law of the interfuces does not explicitly enter in these equations. In other words the
relation between the interface tractions and the resulting interface displacements have not explicitly been used in
(BR). We finally mention that eqn (BS) can also be used for an incremental set of loads (dF, de), d4)) and (dF,
dr. d47) which are superimposed on an existing equilibrium state of deformation.



